Every composition operator is (mean) asymptotically Toeplitz

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is Every Matrix Similar to a Toeplitz Matrix?

We show that every n × n complex nonderogatory matrix is similar to a unique unit upper Hessenberg Toeplitz matrix. The proof is constructive, and can be adapted to nonderogatory matrices with entries in any field of characteristic zero or characteristic greater than n. We also prove that every n× n complex matrix with n ≤ 4 is similar to a Toeplitz matrix.

متن کامل

Every Matrix is a Product of Toeplitz Matrices

We show that every n × n matrix is generically a product of n/2 + 1 Toeplitz matrices and always a product of at most 2n + 5 Toeplitz matrices. The same result holds true if the word ‘Toeplitz’ is replaced by ‘Hankel,’ and the generic bound n/2 + 1 is sharp. We will see that these decompositions into Toeplitz or Hankel factors are unusual: We may not, in general, replace the subspace of Toeplit...

متن کامل

Generalised Slant Weighted Toeplitz Operator

A slant weighted Toeplitz operator Aφ is an operator on L(β) defined as Aφ = WMφ where Mφ is the weighted multiplication operator and W is an operator on L(β) given by We2n = βn β2n en, {en}n∈Z being the orthonormal basis. In this paper, we generalise Aφ to the k-th order slant weighted Toeplitz operator Uφ and study its properties. Keywords—Slant weighted Toeplitz operator, weighted multiplica...

متن کامل

Almost every graph is divergent under the biclique operator

A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G denoted by KB(G), is the intersection graph of all the bicliques of G. The biclique graph can be thought as an operator between the class of all graphs. The iterated biclique graph of G denoted by KBk(G), is the graph obtained by applying the biclique operator k successive times to G. The asso...

متن کامل

When every $P$-flat ideal is flat

In this paper‎, ‎we study the class of rings in which every $P$-flat‎ ‎ideal is flat and which will be called $PFF$-rings‎. ‎In particular‎, ‎Von Neumann regular rings‎, ‎hereditary rings‎, ‎semi-hereditary ring‎, ‎PID and arithmetical rings are examples of $PFF$-rings‎. ‎In the context domain‎, ‎this notion coincide with‎ ‎Pr"{u}fer domain‎. ‎We provide necessary and sufficient conditions for‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2007

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2006.10.054